Real Time Water Quality (RTWQ) Deployment Report NF02YL0012 - Humber River at Humber Village Bridge
 November 2009 - January 2010

General

- The Water Resources Management Division staff monitors the real-time web page on a daily basis.
- This monthly report interprets the data from the Humber River at Humber Village Bridge RTWQ station for the period of November $9^{\text {th }}, 2009$ to January $6^{\text {th }}, 2010$.

Maintenance and Calibration of Instrumentation

- The instrument was deployed from November $9^{\text {th }}, 2009$ to January $6{ }^{\text {th }}, 2010$. (58 day deployment period) at which point it was removed for maintenance and calibration. This was a typical deployment period for this station at this time of the year and the instrument appears to have kept its calibration reasonably well for the duration of the deployment period.
- The results from comparing the Minisonde values to the Datasonde values can be seen in Table 1. Collection of QA/QC readings involves a second set of data readings being collected at the time of removal \& installation, using a similar, freshly calibrated instrument. Data readings from both instruments were compared and their variability was ranked, as part of the QA/QC protocol.
- For installation a ranking of excellent was achieved for dissolved oxygen and conductivity, while pH had a fair rating and temperature was good. For removal a ranking of excellent was achieved for temperature, conductivity and dissolved oxygen, while pH was fair.

Table 1: QA/QC Data Comparison Rankings for installation - Nov. $9^{\text {th }}$ \& removal - Jan. $6^{\text {th }}, 2010$

Station	Date	Action	Minisonde vs. Datasonde Comparison Ranking			
			Temperature	pH	Conductivity	Dissolved Oxygen
Humber River at	Nov 9 ${ }^{\text {th }}, 2009$	Installation	Good	Fair	Excellent	Excellent
Humber Village Bridge	Jan $6^{\text {th }}, 2009$	Removal	Excellent	Fair	Excellent	Excellent

Data Interpretation

- During the deployment period of November $9^{\text {th }}, 2009$ to January $6^{\text {th }}, 2010$ the water quality was relatively stable for all water quality parameters with a typical late fall seasonal trend and gentle variations throughout the deployment period.
- Water temperature values (Figure 1) for the deployment period ranged from a high of $6.4^{\circ} \mathrm{c}$ to a low of $2.4^{\circ} \mathrm{c}$ with a gradual cooling trend.

Figure 1

- Dissolved oxygen (DO) values (Figure 2) for the deployment period showed a gently rising trend in relation to falling temperature. During the deployment period oxygen ranged from a low of 11.26 mg / l to a high of $12.7 \mathrm{mg} / \mathrm{l}$, which is typical of this period at this station.

Figure 2

- There are 4 different guidelines for DO depending on the life cycle stage and water temperature (cold water/other life stages - above $6.5 \mathrm{mg} / \mathrm{L}$; warm water/other life stages - above $5.5 \mathrm{mg} / \mathrm{L}$; warm water/early life stages - above $6 \mathrm{mg} / \mathrm{L}$; cold water/early life stages $-9.5 \mathrm{mg} / \mathrm{L}$). All guidelines were met during this deployment period.
- pH values (Figure 3) ranged from 6 to 7.23 over the deployment period which is a typical range of values for this station. The CCME Guidelines for the Protection of Freshwater Aquatic Life for pH is a range of $6.5-9.0$ and only a small percentage of the readings were below 6.5. Due to the underlying geology and ecosystem characteristics it is quite common for Newfoundland surface waters to have a pH lower than the range recommended by the CCME Guidelines.

Figure 3

- Specific conductance values (Figure 4) were relatively consistent over the deployment period with some day to day variation. Values ranged from $38.3 \mu \mathrm{~S} / \mathrm{cm}$ to $41.8 \mu \mathrm{~S} / \mathrm{cm}$, which is typical for this station.
- Turbidity values were zero for the duration of the deployment period and therefore are not graphed in this report.

Humber River At Humber Village Bridge - NF02YL0012
Department of Environment \& Conservation Water Resources Management Division

Figure 4

Humber River At Humber Village Bridge - 02YL003

Department of Environment \& Conservation Water Resources Management Division

Figure 5

- Stage height readings (Figure 5) showed relatively stable levels through the deployment period with some gentle undulations. During the deployment period the height of the river ranged from 1.576 m to 2.953 m , which translates to a range of $154 \mathrm{~m}^{3} / \mathrm{s}$ to $399 \mathrm{~m}^{3} / \mathrm{s}$.
- Climate data for the months of November and December is appended to the end of this report.

Prepared by: Ian Bell

Environmental Scientist
Department of Environment and Conservation
Phone: (709) 637-2431
Fax: (709) 637-2541
E-mail: ianbell@gov.nl.ca

Daily Data Report for November 2009

$\begin{aligned} & \mathrm{D} \\ & \mathbf{a} \\ & \mathbf{y} \end{aligned}$	$\frac{\frac{\text { Max }}{\frac{\text { Temp }}{}}}{{ }^{\circ} \mathbf{C}}$	$\begin{aligned} & \frac{\text { Min }}{\frac{\text { Temp }}{}} \\ & { }^{\circ} \mathbf{C} \\ & \text { 回 } \end{aligned}$	$\frac{\frac{\text { Mean }}{\text { Temp }}}{{ }^{\circ} \mathbf{C}}$	$\begin{aligned} & \frac{\text { Heat }}{\text { Deq }} \\ & \frac{\text { Days }}{{ }^{\circ} \mathrm{C}} \\ & \text { 四 } \end{aligned}$	$\frac{\text { Cool }}{\text { Deq }}$ $\frac{\text { Davs }}{}$ ${ }^{\circ} \mathrm{C}$ M	Total Rain mm	Total Snow cm	Total Precip mm Nㅓㄴ	$\frac{\text { Snow on }}{\frac{\text { Grnd }}{\text { cm }}}$	$\frac{\text { Dir of }}{\text { Max }}$ $\underline{\text { Gust }}$ 10's Deg	$\frac{\begin{array}{l} \text { Spd of } \\ \text { Max Gust } \end{array}}{\text { km/h }}$
$\underline{01}{ }^{+}$	14.5	3.0	8.8	9.2	0.0	M	M	17.9		25	72
$\underline{02+}$	6.7	-2.3	2.2	15.8	0.0	M	M	0.0			<31
03 ${ }^{+}$	3.3	-0.8	1.3	16.7	0.0	M	M	21.1		8	39
04 ${ }^{+}$	5.2	-0.3	2.5	15.5	0.0	M	M	2.1		26	46
05 ${ }^{+}$	3.4	-4.2	-0.4	18.4	0.0	M	M	0.7		27	50
06 ${ }^{+}$	0.7	-3.3	-1.3	19.3	0.0	M	M	12.7		8	52
07+	0.7	-3.4	-1.4	19.4	0.0	M	M	0.0		31	39
08+	3.9	-3.9	0.0	18.0	0.0	M	M	3.1		21	44
$\underline{09}+$	5.7	2.3	4.0	14.0	0.0	M	M	0.0		27	54
10+	4.1	-2.2	1.0	17.0	0.0	M	M	0.0			<31
$\underline{11}{ }^{+}$	3.2	-2.8	0.2	17.8	0.0	M	M	0.8		28	39
12+	5.2	-4.2	0.5	17.5	0.0	M	M	0.6		22	35
$\underline{13}{ }^{+}$	5.1	-1.1	2.0	16.0	0.0	M	M	0.0		29	35
14+	10.8	-0.5	5.2	12.8	0.0	M	M	0.0		24	32
15+	10.1	5.1	7.6	10.4	0.0	M	M	16.4			<31
16 ${ }^{+}$	11.0	1.6	6.3	11.7	0.0	M	M	1.3		26	54
17+	2.2	-1.9	0.2	17.8	0.0	M	M	0.6		29	37
18+	3.3	-2.3	0.5	17.5	0.0	M	M	0.0		31	33
19+	4.0	-3.3	0.4	17.6	0.0	M	M	0.0		29	35
$\underline{20}+$	9.1	-1.7	3.7	14.3	0.0	M	M	0.0		23	33
$\underline{21}{ }^{+}$	9.6	0.4	5.0	13.0	0.0	M	M	9.6		23	50
$\underline{22+}$	2.1	-4.2	-1.1	19.1	0.0	M	M	0.0		30	32
$\underline{23+}$	3.9	-4.8	-0.5	18.5	0.0	M	M	M			<31
$\underline{24+}$	4.4	-0.9	1.8	16.2	0.0	M	M	0.0		19	33
$\underline{25}+$	7.9	0.1	4.0	14.0	0.0	M	M	0.0			<31
$\underline{26}+$	11.1	3.3	7.2	10.8	0.0	M	M	6.0		21	48
$\underline{27}+$	3.9	1.6	2.8	15.2	0.0	M	M	28.0		9	43
$\underline{28}+$	14.8	1.7	8.3	9.7	0.0	M	M	3.9		8	50
$\underline{29}+$	7.6	-0.5	3.6	14.4	0.0	M	M	3.7		26	57
30+	2.8	0.6	1.7	16.3	0.0	M	M	3.0		26	61
Sum				463.9	0.0	M	M	131.5*			
Avg	6	-1	2.52								
Xtrm	14.8	-4.8								25	72

Daily Data Report for December 2009

$\begin{aligned} & \mathbf{D} \\ & \mathbf{a} \\ & \mathbf{y} \end{aligned}$	$\frac{\frac{\text { Max }}{\text { Temp }}}{{ }^{\circ} \mathrm{C}}$	$\begin{gathered} \frac{\text { Min }}{\text { Temp }} \\ \frac{{ }^{\circ} \mathrm{C}}{\text { Tem }} \end{gathered}$	$\begin{gathered} \frac{\text { Mean }}{\text { Temp }} \\ { }^{\circ} \mathbf{C} \\ \text { 罒 } \end{gathered}$	$\begin{aligned} & \frac{\text { Heat }}{\text { Deq }} \\ & \frac{\text { Days }}{{ }^{\circ} \mathrm{C}} \end{aligned}$ M	$\frac{\text { Cool }}{\text { Deq }}$ $\frac{\text { Days }}{{ }^{\circ} \mathrm{C}}$ (Total Rain mm	Total Snow cm	Total Precip mm NㅓN	$\frac{\text { Snow on }}{\frac{\text { Grnd }}{\text { cm }}}$	$\frac{\text { Dir of }}{\text { Max }}$ $\underline{\text { Gust }}$ 10's Deg	$\frac{\begin{array}{l} \text { Spd of } \\ \text { Max Gust } \end{array}}{\text { km/h }}$
$\underline{01+}$	3.6	-2.3	0.7	17.3	0.0	M	M	14.1		29	59
$\underline{02+}$	-1.1	-4.0	-2.6	20.6	0.0	M	M	0.0		30	65
$\underline{03}+$	1.5	-1.7	-0.1	18.1	0.0	M	M	0.0		28	61
$\underline{04}{ }^{+}$	2.7	-3.7	-0.5	18.5	0.0	M	M	0.0			<31
$\underline{05}{ }^{+}$	3.4	-2.1	0.7	17.3	0.0	M	M	0.0		28	46
$\underline{06}+$	-1.8	-4.8	-3.3	21.3	0.0	M	M	0.0		31	39
07+	-3.0	-5.0	-4.0	22.0	0.0	M	M	0.0		31	46
08 ${ }^{+}$	-4.8	-7.2	-6.0	24.0	0.0	M	M	0.0		28	39
$\underline{09}+$	-4.9	-8.3	-6.6	24.6	0.0	M	M	0.0		28	39
$\underline{10}{ }^{+}$	0.5	-6.9	-3.2	21.2	0.0	M	M	0.6			52
$\underline{11}{ }^{+}$	0.1	-4.0	-2.0	20.0	0.0	M	M	0.0		24	56
$\underline{12+}$	-2.3	-7.7	-5.0	23.0	0.0	M	M	0.0		27	48
$\underline{13}{ }^{+}$	-6.5	-9.1	-7.8	25.8	0.0	M	M	0.0		28	54
$14+$	1.3	-8.5	-3.6	21.6	0.0	M	M	0.0			<31
$\underline{15}{ }^{+}$	3.9	-5.1	-0.6	18.6	0.0	M	M	0.0		15	50
$\underline{16+}$	4.8	-2.6	1.1	16.9	0.0	M	M	0.0		11	46
$\underline{17}+$	-2.1	-11.3	-6.7	24.7	0.0	M	M	0.0		26	32
18 ${ }^{+}$	-4.2	-10.1	-7.2	25.2	0.0	M	M	0.0		30	41
19+	-1.9	-12.1	-7.0	25.0	0.0	M	M	0.0			<31
$\underline{20}{ }^{+}$	2.2	-2.3	-0.1	18.1	0.0	M	M	0.0			46
$\underline{\underline{21}}{ }^{+}$	3.4	0.3	1.9	16.1	0.0	M	M	0.6		6	54
$\underline{22}{ }^{+}$	3.6	1.7	2.7	15.3	0.0	M	M	0.0		9	50
$\underline{23}+$	1.9	-2.8	-0.5	18.5	0.0	M	M	0.0		9	32
$\underline{24}{ }^{+}$	-1.6	-3.9	-2.8	20.8	0.0	M	M	0.0			<31
$\underline{25}{ }^{+}$	-1.5	-8.5	-5.0	23.0	0.0	M	M	0.0			<31
$\underline{26}+$	0.1	-9.0	-4.5	22.5	0.0	M	M	0.0			<31
$\underline{27}{ }^{+}$	-1.2	-6.0	-3.6	21.6	0.0	M	M	0.0			<31
$\underline{28}{ }^{+}$	6.1	-4.0	1.1	16.9	0.0	M	M	0.0		16	44
$\underline{29}+$	3.6	-0.4	1.6	16.4	0.0	M	M	0.0		20	35
30+	1.3	-11.2	-5.0	23.0	0.0	M	M	0.0		26	50
$\underline{31}{ }^{+}$	-7.8	-10.8	-9.3	27.3	0.0	M	M	0.0		30	33
Sum				645.2	0.0	M	M	15.3			
Avg	0	-5.6	-2.81								
Xtrm	6.1	-12.1								30	65

